
Supplementary table 1:  Clinical properties of agents targeting EGFR  

Treatment regimen Response rate Median 

progression-free 

survival 

Median overall 

survival 

Trial & 

Reference 

Metastatic lung cancer 

Erlotinib vs. 

Placebo 

Second-line treatment of patients w/ stage IIIB/IV 

lung cancer regardless of EGFR mutational status 

9% 

1% 

2.2 m 

1.8 m 

6.7 m 

4.7 m 

BR.21 
1
 

Erlotinib vs.  

Carboplatin + gemcitabine 

First-line treatment of Chinese patients with EGFR 

L858R or exon 19 deletions 

83% 

36% 

13.1 m 

4.6 m 

Pending OPTIMAL 
2
 

Erlotinib vs. 

Cisplatin/carboplatin + docetaxel/gemcitabine 

First-line treatment of European patients with EGFR 

L858R or exon 19 deletions 

64% 

18% 

9.7 m 

5.2 m 

19.3 m 

19.5 m 

EURTAC 
3
 

Erlotinib vs.  

Placebo 

Maintenance treatment of patients without progressive 

disease after 4 cycles of platinum-based first-line 

chemotherapy.  70% of patients positive for EGFR on 

immunohistochemistry, and patients entered regardless 

of EGFR mutation status.  Patients with activating 

EGFR mutations experienced greatest benefit in PFS 

with maintenance therapy 
4
. 

11.9% 

5.4% 

12.3 wks 

11.1 wks 

12 m 

11 m 

SATURN
5
 

Gefitinib vs. 

Carboplatin + paclitaxel 

Patients with EGFR mutant metastatic lung cancer 

who were part of a cohort of East-Asian non-smokers 

or light-smokers 

71.2%  

47.3% 

9.5 m 

6.3 m 

21.6 m 

21.9 m (p = 0.99) 

IPASS 
6
 

Gefitinib vs.  

Carboplatin + paclitaxel 

74% 

31% 

10.8 m 

5.4 m 

27.7 

26.6 (p = 0.483) 

NEJ-02 
7,8
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First-line treatment of EGFR mutant predominantly 

Japanese patients 

Gefitinib vs.  

Cisplatin + docetaxel 

First-line treatment of exon 19 or L858R EGFR 

mutant predominantly Japanese patients w/ stage 

IIIB/IV disease. 

62% 

32% 

9.2 m 

6.3 m 

Pending WJTOG3405
9
 

Gefitinib vs. 

Placebo 

Maintenance treatment of East Asian patients with 

stage IIIB/IV lung cancer after 4 cycles of platinum-

based chemotherapy, ~25% of whom had activating 

EGFR mutations. 

24% 

1% 

4.8 m 

2.6 m 

18.7 m 

16.9 m (p = 0.26) 

INFORM; C-

TONG 0804
10

 

Cetuximab + cisplatin + vinorelbine vs. 

Cisplatin + vinorelbine 

First-line treatment of EGFR positive patients. 

36% 

29% 

4.8 m 

4.8 m 

11.3 m 

10.1 m (p = 0.044) 

FLEX 
11

 

Cetuximab + carboplatin + taxane vs. 

Carboplatin + taxane 

First-line treatment of patients unselected for EGFR 

expression. 

25.7% 

17.2 % (p = 0.007) 

4.4 m  

4.24 m (p = 0.24) 

9.7 m 

8.4 m  (p = 0.17) 

BMS-099
12

 

Head and neck 

Cetuximab + platinum + 5-FU vs. 

Platinum + 5-FU 

Patients with untreated recurrent or metastatic 

squamous cell carcinoma. 

36% 

20% 

5.6 m 

3.3 m 

10.1 m 

7.4 m 

EXTREME
13

 

Cetuximab + radiation vs. 

Radiation 

Patients with locoregionally-advanced (stage III or IV, 

nonmetastatic) squamous cell carcinoma. 

74% 

64% 

17.1 m 

12.4 m 

49 m 

29.3 m 

14
 

Colorectal cancer 

Cetuximab + FOLFIRI vs. 

FOLFIRI 

First-line treatment of EGFR positive patients w/ 

57% 

40% 

 

9.9 m 

8.4 m 

23.5 m 

20 m 

CRYSTAL 
15
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unresectable metastases.  Patients with wildtype KRAS 

had improved PFS (HR = 0.68) compared to patients 

with mutant KRAS. 

Cetuximab vs. 

Best supportive care 

KRAS wildtype patients with no remaining standard 

chemotherapy options. 

12.8% 

0% 

3.7 m 

1.9 m 

9.5 m 

4.8 m 

CO.17 
16

 

Cetuximab + erlotinib 

KRAS wildtype patients with treatment failure of 5-

FU, irinotecan, and oxaliplatin and no prior anti-EGFR 

therapy. 

41% 5.6 m 12.9 m DUX 
17

 

Cetuximab vs.  

Cetuximab + irinotecan 

Patients with irinotecan-refractory disease, KRAS 

testing not performed . 

10.8% 

22.9% 

1.5 m 

4.1 m 

6.9 m 

8.6 m (p = 0.48) 

BOND 
18

 

Panitumumab + FOLFOX vs. 

FOLFOX 

First-line treatment of KRAS wildtype patients. 

55% 

48% 

9.6 m 

8.0 m 

23.9 m 

19.7 m (p = 0.072) 

PRIME 
19

 

Panitumumab + FOLFIRI vs. 

FOLFIRI 

Second-line treatment with panitumumab beneficial in 

patients with wild-type KRAS, while no benefit seen in 

patients with mutant KRAS. 

35% 

10% 

5.9 m 

3.9 m 

14.5 m 

12.5 m (p = 0.12) 

20
 

Panitumumab vs. 

Best supportive care 

 

17% 

0% 

3.1 m 

1.8 m 

8.1 m 

7.6 m (non-

significant) 

21
 

Pancreatic cancer 

Erlotinib + gemcitabine vs. 

Gemcitabine 

Patients with metastatic, unresectable, or locally 

advanced pancreatic cancer.  Previous treatment with 

chemo-RT for local disease allowed. 

8.6% 

8.0% 

3.75 m 

3.55 m (p = 0.004) 

6.24 m 

5.91 m (p = 0.38) 

NCIC CTG 

PA.3 
22
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Supplementary table 2:  Clinically validated mechanisms of resistance to drugs that target EGFR 

Lung cancer  

Primary resistance – erlotinib and gefitinib  

EGFR exon 20 

insertion 

~100-fold decreased sensitivity to TKIs 
23

.  Occur in 

~9% of patients with EGFR-mutant lung cancer 
24,25

. 

Dacomitinib may be more effective compared to 

erlotinib/gefitinib:  In a phase I trial, of 5 patients 

with an exon 20 insertion, 1 had a partial response 

and 2 stable disease 
26

. 

BIM mutation 

 

Germline intronic deletion found in ~12% of East Asian 

individuals, but not in European or African populations, 

disrupts a splice site in BIM, leading to protein that 

lacks the BH3 domain necessary to effect apoptosis 
27

.  

This deletion is found in a cell line resistant to gefitinib 

(HCC2779).  Patients with EGFR mutant lung cancer 

who also carry a BIM deletion have a shorter 

progression-free survival with gefitinib treatment, and 

BIM RNA levels predict clinical response to EGFR 

TKIs 
28

.  BIM expression is required for apoptosis 

induced by erlotinib/gefitinib in EGFR mutant lung 

cancer cell lines 
29-32

. 

 BH3 mimetic small molecules (i.e. ABT-737) 

reverse sensitivity to gefitinib in resistant cell 

lines that harbor BIM deletion. 

 The HDAC inhibitor vorinostat increases 

expression of wild-type BIM in cell lines with a 

deletion polymorphism, possibly via epigenetic 

mechanisms, and restores sensitivity to EGFR 

TKIs 
33

.  

EGFR T790M Identified in 0.5%-3% of patients and is associated with 

resistance to EGFR TKI treatment 
34,35

. 

 

Irreversible and mutant-selective inhibitors may be 

treatment options (discussed below) 

Acquired resistance – erlotinib and gefitinib  

EGFR T790M 
36

 Found in ~50% of patients with acquired resistance.  

May be present in a small number of cells in the 

primary tumor, prior to EGFR TKI treatment 
34,37

.  The 

T790M mutation increases EGFR affinity for ATP by 

~5-fold, which abrogates sensitivity to ATP competitive 

inhibitors like erlotinib/gefitinib 
38

.  Germline T790M 

mutation reported in family with multiple cases of lung 

cancer across generations 
39

.  Other mutations such as 

D761Y, L747S, G796A, and T854A confer resistance 

to EGFR TKIs, and occur with much less frequency 

 Irreversible inhibitors like afatinib, canertinib, 

dacomitinib, and T790M mutant-specific 

inhibitors like WZ-4002, CO-1686, and 

AZD9291 overcome resistance 
42

.   

 Midostaurin and AP26113, two reversible 

kinase inhibitors developed for AML and ALK-

fusion positive lung cancer, selectively and 

reversibly inhibit EGFR T790M in cell lines and 

mouse models 
43,44

. 

 Combination of afatinib + cetuximab induced 
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than T790M 
40,41

. partial responses in 29% of patients with 

previous erlotinib/gefitinib treatment and a 

T790M mutation 
45,46

. 

 Modulation of tyrosine kinase inhibitor dosing 

 Hsp90 inhibitors inhibit EGFR T790M 

signaling and block the growth of lung cancers 

with this mutation in mice 
47,48

. 

HER2 amplification HER2 amplification observed in 12% of tumor samples 

from patients with acquired resistance, in contrast to 1% 

of treatment-naïve patients, and occurs exclusive to 

EGFR T790M 
49

.   

Afatinib plus cetuximab or panitumumab abrogates 

Her2 signaling. 

 

 

MET amplification 

and activation 

Amplification found in 5-20% of patients with acquired 

resistance 
50,51

.  Small populations of MET amplified 

cells may be present prior to treatment in patients who 

go on to develop resistance via MET amplification 
52

.  

MET a receptor tyrosine kinase; activation leads to 

ERBB3/PI3K/AKT signaling, rendering cells resistant 

to EGFR TKIs.  Hepatocyte growth factor (HGF) is an 

activating ligand for MET that triggers proliferation via 

GAB1 signaling 
52

.  Patients with resistance to EGFR 

TKIs who lack the T790M mutation or MET 

amplification displayed increased tumor levels of HGF 
53

.   Patients with intrinsic resistance to EGFR TKIs 

also have elevated HGF expression, and tumor-

associated fibroblasts have been shown to secrete HGF 
54,55

.  Acquired resistance to WZ-4002 is also triggered 

by HGF expression and ERK activation, but can be 

restored through co-treatment with the MET TKI E7050 
33

, and the MEK inhibitor CI-1040 
56

, respectively. 

 

 

 Phase III clinical trials of erlotinib + a MET 

inhibitor (tivantinib (ARQ197), MARQUEE) 

and erlotinib + an anti-MET antibody 

(onartuzumab, MetLung) underway 
57,58

.   

 HGF (AMG102, TAK-701) and ERBB-3  (MM-

121) specific antibodies are in clinical 

development.  TAK-701 inhibits the 

proliferation of EGFR mutant cells transfected 

to overexpress HGF in vitro and in mouse 

models 
59

. 

 Hsp90 inhibitors trigger apoptosis in cells 

rendered resistant to EGFR TKIs by HGF 

addition 
60

. 

 The dual MET/VEGF kinase inhibitor E7050 

restores sensitivity to EGFR TKIs in cell lines 

and in mouse tumor models, and prevents the 

emergence of EGFR TKI resistance 
61,62

. 

 The PI3K/mTOR inhibitor BEZ235 is active 

alone against EGFR mutant tumor cell lines in 

the presence or absence of HGF in vitro and in 

vivo 
63

. 

 Low BRCA1 expression may abrogate the 
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negative effect of pretreatment EGFR T790M 

mutations on PFS 
64

. 

NF- B NF- B, which contributes to tumor cell proliferation,  

was identified as a mediator of erlotinib resistance in an 

siRNA screen of erlotinib-resistant cells of unknown 

mechanism.  Patients with EGFR mutant lung cancer 

without a T790M mutation who were treated with 

erlotinib and who had low levels of the NF- B 

inhibitor, I B, had a decreased progression-free 

survival 
65

. 

The I B kinase inhibitor BMS-345541 restores 

sensitivity to erlotinib in cells with NF- B 

activation. 

PIK3CA activation Occur in ~2% of lung cancer patients, and has been 

reported to occur along with activating EGFR mutations 
66

.  PIK3 activating mutations are sufficient to abrogate 

gefitinib-mediated apoptosis in lung cancer cell lines 
67

.  

PTEN loss is associated with activation of PI3K 

signaling and resistance 
68

. 

 

BRAF mutation V600E and G469A BRAF mutations noted in 1% of 

lung cancers with acquired resistance 
69

. 

BRAF V600E is sensitive to vemurafenib 

Small cell 

transformation 

Noted in patients with acquired resistance 
70,71

. Etoposide + cisplatin chemotherapy 

Epithelial-

mesenchymal 

transition 

(EMT)/AXL, Notch-1 

or TGF-  activation 

EMT observed in patients and cell lines as a resistance 

mechanism to EGFR TKIs 
72,73

.  AXL kinase is 

upregulated in erlotinib-resistant tumor xenografts 

generated in mice, and in tumor samples from patients 

with acquired resistance.  AXL expression 
74

, Notch-1 

activation 
75

, and TGF- IL-6 secretion 
76,77

 are 

associated with the epithelial-mesenchymal transition. 

Inhibition of TGF-  signaling by LY2157299 and 

AXL kinase activity by MP-470, SGI-7079, and 

XL-880 restores sensitivity to EGFR TKIs. 

   

Colorectal cancer   

Primary resistance – EGFR mAbs  

KRAS mutations Occur in ~40% of patients with metastatic colorectal 

cancers and render tumors resistant to inhibition of 

EGFR signaling by cetuximab and panitumumab, likely 
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due to constitutive KRAS activation 
78

.  Use of 

cetuximab and panitumumab are restricted to patients 

with KRAS wildtype tumors.  

BRAF mutation In KRAS wildtype tumors, patients with BRAF 

mutations had an 8.3% response rate to cetuximab 

compared to a 38% response rate in BRAF wildtype 

tumors 
79

. 

In tumors with BRAF V600E mutations, 

vemurafenib is synergistic with cetuximab and 

gefitinib/erlotinib 
80,81

 

PIK3CA exon 20 

mutation 

Patients with PIK3CA exon 20 mutations had a 0% 

response rate to cetuximab compared to 36.8% in 

wildtype patients 
79

. 

 

PTEN loss PTEN wildtype associated with a ~23.9 odds ratio of 

response to cetuximab or panitumumab compared to 

PTEN loss 
82

. 

 

Acquired resistance – cetuximab 

EGFR extracellular 

domain mutations 

S492R mutation abrogates cetuximab binding to EGFR 

on tumor cells 
83

.  

Panitumumab remains active 

KRAS activation KRAS amplification or secondary activating mutations 

mediate resistance to cetuximab and panitumumab 
84,85

.  

The kinetics of the emergence of KRAS mutations in the 

serum of patients who develop resistance to 

panitumumab suggests populations of KRAS mutants 

may exist prior to treatment 
84

. 

MEK inhibition reverses resistance  
85

 

HER2 upregulation Amplification observed in colon and lung cancer cell 

lines with resistance to cetuximab.  HER2 mediated 

resistance occurs via ERK1/2 signaling.   Patients with 

HER2 amplification treated with cetuximab have a 

significantly shorter overall survival (307 vs. 515 d) and 

patients treated with cetuximab with higher heregulin 

levels have a shorter OS (137 vs. 366 d) 
86

 

 Treatment with trastuzumab/lapatinib restores 

sensitivity to cetuximab. 

 ADAM17 is a metalloprotease that cleaves 

heregulin from the cell surface, promoting 

heterodimerization of Her2/Her3.  INCB3619, 

an ADAM17 protease inhibitor enhances 

gefitinib sensitivity in cell lines that 

overexpress heregulin 
87

. 

 Pertuzumab restores sensitivity to cetuximab 

by disrupting Her2/Her3 heterodimers in 

preclinical models. 
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MET amplification Identified in ctDNA prior to progression in patients 

treated with EGFR targeted mAbs; no mutations were 

observed in KRAS 
88

.  MET amplification associated 

with cetuximab resistance in cell lines and patient-

derived xenografts. 

Treatment of patient-derived xenografts harboring 

MET amplification with crizotinib restores 

sensitivity to cetuximab. 
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Supplementary table 3:  Preclinical mechanisms of resistance to EGFR-targeted therapies 

 

Mechanism of resistance                                                                 Strategy to overcome resistance 

Aurora:  Increased Aurora kinase A and EGFR expression is 

associated with a poor prognosis in patients with squamous 

cell cancer of the head and neck 
89

. 

Combination of an Aurora kinase inhibitor and EGFR mAb 

produced more potent inhibition than either alone 
89

. 

CRKL:  Amplification of the adapter protein CRKL activates 

RAS-RAF-ERK and AKT signaling and causes resistance to 

gefitinib 
90

.     

 

DAPK:  DAPK is a kinase involved in apoptosis.  Silencing of 

DAPK expression via promoter methylation is observed in cell 

lines resistant to erlotinib and cetuximab 
91

.  Knock-down of 

DAPK by siRNA is sufficient to induce resistance. 

 

EGFR:  EGFR ubiquitination and activation of Src signaling 

leads to cetuximab resistance in cell lines 
92

.  Src-mediated 

EGFR ligand overexpression leads to EGFR internalization 
93

. 

 

EGFRvIII overexpression (exon 2-7 deletion that lacks 

extracellular ligand-binding domain) induces resistance to 

cetuximab in head and neck cancer cell lines 
94

, and is 

sufficient to induce lung cancer in mice 
95

. 

 

Increased EGFR receptor internalization in response to ligand 

stimulation may alter binding of reversible inhibitors and lead 

to resistance 
96

.  Nuclear localization of EGFR mediated by 

Src kinases associated with resistance to cetuximab in lung 

cancer cell lines 
93

. 

Dasatinib, a Src inhibitor resensitizes resistant cells to cetuximab 
97

, but failed to show activity in a clinical trial of patients with 

acquired resistance 
98

. 

 

 

Development of EGFRvIII-specific antibodies or antibody-

cytotoxins.  EGFRvIII is sensitive to irreversible inhibitors like 

neratinib and dacomitinib. 

 

 

Irreversible inhibitors overcome resistance in cells displaying 

altered EGFR trafficking.  Dasatinib treatment decreased nuclear 

EGFR localization 
93

. 

FGF:  Increased expression of FGF is associated with 

acquired resistance in lung cancer 
99-101

. 

Treatment with the FGF-specific inhibitor AZD4547 or 

PD173074 restores sensitivity to EGFR TKIs 
99,100

. 

HER2:  HER2 activating mutations lead to EGFR heterodimer 

formation and signaling that is independent of the EGFR 

kinase domain and resistant to EGFR TKIs 
102

.  HER2 is 

reported to be upregulated in head and neck squamous cell 

Treatment with Her2 inhibitors restores sensitivity 
102

. 
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carcinoma cell lines resistant to cetuximab 
103

. 

HER3:  Activation of Her-3 by ligands such as heregulin 

mediates resistance to EGFR TKIs 
87

.  HER3 reported to be 

upregulated in head and neck squamous cell carcinoma cell 

lines resistant to cetuximab 
103

. 

The ADAM protease cleaves heregulin from the cell membrane 

and inhibition of this protease by INCB3619 increases 

sensitivity to EGFR TKIs 
87

.  MEHD7945A, a monoclonal 

antibody against EGFR and Her-3, is active in lung cancer and 

HNSCC cell lines resistant to cetuximab 
104

. 

IGF:  IGF1R signaling involved in resistance to gefitinib, 

dacomitinib, and the EGFR T790M mutant-specific inhibitor 

WZ-4002 
105,106

.   Increased IGF expression correlates with 

resistance to EGFR mAb in KRAS wildtype colorectal cancer 
107

. 

Dual inhibition of IGFR and EGFR in mice restored sensitivity 

to gefitinib, and cells retained sensitivity to PI3K inhibitors 
106

.  

Cotreatment of colorectal cancer cell lines with erlotinib and the 

IGF inhibitor PQIP resulted in synergistic inhibition 
108

. 

JAK2:  EGFR mutant lung cancer cells selected for resistance 

to erlotinib demonstrate increased levels of phosphorylated 

JAK 
109

. 

Treatment with erlotinib and a JAK inhibitor (JSI-124) results in 

inhibition of cell growth in vitro and in mouse models 
109

. 

MED12:  MED12 is a component of the MEDIATOR 

transcriptional adaptor complex.  Loss of MED12 was 

discovered in an RNAi screen to lead to crizotinib resistance in 

ALK fusion positive cell lines 
77

.  MED12 knockdown also 

resulted in resistance to EGFR TKIs in EGFR mutant cell 

lines, was associated with MEK/ERK and TGF-  pathway 

activation, and an EMT-like phenotype.  MED12 is thought to 

negatively regulate TGF- receptor surface expression by 

interfering with glycosylation. 

The TGF-  receptor inhibitor LY2157299 restores sensitivity to 

gefitinib in lung cancer cells rendered resistant through MED12 

knockdown 
77

. 

PTEN:  PTEN loss and AKT activation identified in lung 

cancer cell lines resistant to erlotinib and irreversible EGFR 

inhibitors 
68,110

, and may occur by suppression of nuclear 

translocation of the EGR1 transcription factor, which regulates 

PTEN expression 
111

.  

AKT/PI3K inhibition may restore sensitivity to EGFR TKIs in 

cells with loss of PTEN expression 
112

.  Inhibition of survivin 

expression by YM155 restores EGFR TKI sensitivity in cells 

with PTEN loss 
113

.  Vandetanib (ZD6474) is effective in EGFR 

mutant lung cancer cells deficient in PTEN 
114

. 

PUMA:  PUMA is a BH3 BCL-2 protein that mediates 

apoptosis upon inhibition of EGFR signaling in lung cancer 
115

. 

PUMA may be activated by nuclear translocation of the FOXO1 

transcription factor in response to inhibition of PI3K-AKT 

signaling 
115

.  The FDA-approved antipsychotic trifluoperazine 

restores sensitivity to EGFR TKIs by blocking FOXO1 nuclear 

export 
116

. 
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ROR1:  ROR1 is a pseudokinase that is regulated by the 

NKX2-1 transcription factor and mediates the balance between 

PI3-AKT survival signaling and apoptosis in lung cancer 
117

. 

Knockdown of ROR1 by siRNA inhibits the proliferation of 

lung cancer with acquired resistance to EGFR TKIs such as 

T790M. 

Acquisition of stem cell properties:  EGFR mutant lung 

cancer cells cultured in the presence of gefitinib acquired stem 

cell like properties such as aldehyde dehydrogenase 1 

overexpression and sphere formation in culture 
118

. 

Gefitinib resistant cells were sensitive to the proteasome 

inhibitor bortezomib and the HDAC inhibitor vorinostat 
118

. 

VEGF:  Increased VEGF production leads to cetuximab and 

EGFR TKI resistance 
119

.   

Vandetanib, a dual EGFR/VEGFR inhibitor overcomes 

resistance to cetuximab 
120

.  Vandetanib failed to demonstrate an 

overall survival benefit versus placebo in lung cancer patients 

previously treated with second or third line EGFR TKI 
121

.  

Treatment of mice with EGFR TKIs and VEGF inhibitors 

(bevacizumab, vandetanib) overcame resistance 
122

. 
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Supplementary table 4:  Clinical properties of “second-generation” EGFR inhibitors  

Treatment regimen Response rate Median 

progression-free 

survival 

Median overall 

survival 

Trial & 

reference 

Metastatic lung cancer - EGFR mutant positive 

Afatinib (Irreversible EGFR, Her2, Her4 inhibitor) vs.  

Cisplatin + pemetrexed 

First-line treatment of EGFR mutant positive patients 

56% 

23% 

11.1 m 

6.9 m 

Pending LUX-Lung 3 
123

 

Afatinib 

EGFR mutant positive patients with ≤ 1 prior lines of 

treatment 

62% 10.1 m 24.8 m LUX-Lung 2 
124

 

Afatinib 

Mostly (85%) EGFR mutation positive patients 

previously treated with second or third line 

erlotinib/gefitinib for ≥ 3 months.  

8.2% 4.4 m 19 m LUX-Lung 4 
125

 

 

Afatinib + cetuximab 

EGFR mutant positive patients with progression on 

erlotinib/gefitinib and an EGFR T790M mutation. 

38% 4.7 m Pending 
126

 

Dacomitinib (Irreversible EGFR, Her2, Her4 

inhibitor) 

First-line treatment of never/light smokers or known 

EGFR mutations 

74% (EGFR exon 

19 or 21 mutants) 

17 m Pending 
127

 

Metastatic or recurrent squamous cell carcinoma of the head and neck 

Afatinib vs. 

Cetuximab 

16.1% 

6.5% (p = 0.09) 

15.9 wks 

15.1 wks (p = 

0.93) 

NR 
128

 

Dacomitinib 12.7% 12.1 wks 34.6 wks 
129
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